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ABSTRACT 
Although it has been developed since 1972, the application 

of a population-based modeling approach in Indonesia, 
particularly to analyze biopharmaceutic and pharmacokinetic 
data remains very limited. This study was aimed to evaluate the 
performance of Monolix and NONMEM, two of the popular 

software packages in a population-based modeling approach, to 
analyze the limited data (sparse data) of the time profiles of the 
simulated plasma drug concentration of a theoretical compound. 
Monolix and NONMEM were used to model the limited data (40 
data points) resulting from random selection of 180 data points 
of plasma drug concentrations (Cp) in 20 subjects at 0.25; 0.5; 

0.75; 1; 1.5; 3; 6; 12 and 18 hours after per-oral administration 
of a 100mg of a theoretical compound. Values of the absorption 
rate constant (Ka), the elimination rate constant (Kel) and the 
distribution volume (Vd) of sparse data estimated using Monolix 
and NONMEM, were compared to the respective values of rich 
data obtained by a conventional two-stage approach using 
PKSolver. The calculation system of a nonlinear mixed effect 

model in Monolix and NONMEM, successfully describes the sparse 
data, based on the visual evaluation of the goodness of fit. 
Comparison of parameter estimates of population values in 
Monolix and NONMEM are in the range of 94 to 108% of the real 

values of the rich data analyzed by PKSolver. A population-based 
modeling can adequately describe limited or sparse data, 
demonstrating its capability as an important tool in clinical 

studies, involving patients. 
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INTRODUCTION 
Population-based modeling approach 

has been developed since 1972, by introduction 
and development of the so called nonlinear 
mixed effect model (Sheiner et al., 1972). 
Briefly, in this method, a certain parameter or 
variable, for example the rate constant of 
absorption, Ka, is considered determined by a 
population or fixed effect value and an inter-
individual variability, resulted in a different Ka 
parameter value in each subject. As such 
approach directly focuses on the population 
data, it allows analyses based on the sparse 
sampling data, which is commonly obtained in 
clinical studies involving patients (Sheiner et al., 
1972).  

This is beneficial, in contrast to a 
conventional two stage approach which 
requires a richer data and cannot analyze such 
limited data. The nonlinear mixed effect model 
is also able to correlate a certain parameter such 
as Ka, clearance (CL), distribution volume (Vd) 
or elimination rate constant (Kel) to certain 
covariates such as sex, age, body weight in a 
quantitative manner, allowing a better 
description and correlation of the population 
data to those covariates (Jonsson and Karlsson, 
1998; Wählby et al., 2001). 

NONMEM was introduced by Lewis 
Sheiner, Stuart Beal and NONMEM Project 
Group at University of California as the first 
software package capable to handle such 
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complex calculation in this nonlinear mixed 
effect modeling approach (Dartois et al., 2007; 
Sheiner et al., 1972). The implementation             
and application of NONMEM in this approach 
has opened a new era in population-based 
pharmacokinetic studies, allowing quantitative 
analyses of the clinical data such as obtained in 
a therapeutic drug monitoring (TDM) (Parke 
and Charles, 1998; Sandström et al., 2001; 
Shaker et al., 2013). In addition to a fast compu-
tation, NONMEM also provides robust, accurate 

and precise maximum likelihood calculation 

(Plan et al., 2012). To date, NONMEM is still 
considered to be the gold standard software in 
population pharmacokinetic-pharmacodynamic 
modeling (Keizer et al., 2013). Currently, 
NONMEM is commercially managed and 
further developed by ICON plc. (Frame, 2006). 

In addition, there are several software 
alternatives for population-based approach 
which are free or free for academic use. One of 
them is Monolix, developed since 2003. It is 
based on SAEM (Stochastic Approximation 
Effect Model) algorithm using MATLAB 
library engine as its core (Sun and Li, 2011).            
In certain pharmacokinetic-pharmacodynamic 
modeling case, particularly with a complex 
differential equations structure, SAEM algorithm 
in Monolix could be considered more powerful 
than FOCE with interaction in NONMEM 
(Chan et al., 2011). Monolix is developed based 
on a thorough statistical theory and could 
provide a fast and efficient calculation in sparse 
data conditions with a large inter individual 
variability (Lavielle and Mentré, 2007). Monolix, 
which is currently maintained and developed by 
Lixoft company, has graphical user interface 

allowing an easier and a more practical use of the 
software in population modeling (Lavielle, 2014). 

Despite of all advantages provided by 
the population based approach, its 
implementation is however still very limited in 
Indonesia. More studies implementing the 
population-based approach should be carried 
out and reported to introduce and familiarize 
more researchers with this approach and 
applications. This research was focused on 
studying the power of Monolix and 
NONMEM to analyze the sparse sampling 
data,   which    were  taken up randomly from a  

rich data of the simulated drug plasma 
concentration (Cp) versus time profile of a 
hypothetical compound. 

 
MATERIAL AND METHODS 
Preparation of data simulation  

We simulated the data of Cp versus time 
after per-oral administration of a 100mg of a 
hypothetical compound (f=1) using Microsoft 
Excel 2013 (running on Windows 10 machine) 
(Liengme, 2015). This step resulted in creation 
of a rich Cp data profiles, i.e. 180 data point of 
20 subjects at 9 time points (at 0.25; 0.5; 0.75; 1; 
1.5; 3; 6; 12 and 18h) for each subject with the 
parameters of Ka, Kel and Vd at values of 
1.87±0.15 per hour, 0.26±0.01 per hour and 
333±38 L, respectively. These rich data are 
considered the reference or real data (Figure 1 
panel A). 

Furthermore, the sparse sampling data 
were originated from the random selection of 
those rich data by choosing 1 to 3 data per 
subject. This resulted in 40 data points from 20 
subjects (Figure 1 panel B). 
 

Data analysis 

Monolix (stand alone, version 4.3.2, 
running on Windows 10 machine) (Chan et al., 
2011) and NONMEM (version 7.3, using 
Gfortran compiler, directed using PLTTools 
lite version 5.4.1) (Frame, 2006) were used to 
model the limited sparse sampling data.  

Inter-individual variability was modelled 
by an exponential error model as written in 
equation 1.  

 

Pi = θ.exp(ηi)……………………….(1)        
in which θ is the population value or the             
fixed effect parameter P. Pi is the individual 
estimate value and ηi is the inter-individual 
variation, for which the values are assumed             
to be independently and normally distributed 
with mean zero and variance ω2. The 
interindividual variability was applied for Ka, 
Vd and Kel. 

The residual error was characterised by 
the additive error model in equation 2. 

 

Fpij = Foij + ε1 …………………..(2)       
where Fpij is the prediction of the jth evaluated 
functions (Cp), Foij is the measured value of  
the  evaluated  function  (Cp),        and ε represents            
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the   residual   deviation   of the predicted from 
the observed value and is assumed to be 
independently   and   normally  distributed with 
mean zero and variance σ2. The analysis of            
the population parameters θ, ω2, and σ2                  
was performed using SAEM algorithm and             
the first-order with interaction method               
(FOCE) in Monolix and NONMEM 
respectively. 

In Monolix, analyses were performed 
using the structural one compartment oral 
model with Ka, Kel and Vd parameters 
provided in Monolix library. No covariate was 
applied while the covariance implemented the 
default diagonal pattern. Data were assumed to 
follow a log normal distribution. Calculation 
was performed using 2 (per hour), 300 (L) and 
0.5 (per hour) as initial estimates of Ka, Vd and 

 
 

Figure 1.  Data of the rich/real data (panel A) and the sparse data (panel B) of the simulated Cp 
versus time profile of a 100mg theoretical compound delivered by per-oral route (f=1). 

 

 
 

Figure 2. Configuration of Monolix analyses of the sparse data 
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Kel respectively. The initial estimates of the 
random error (eta) were 0.2, 0.2 and 0.1 for Ka, 
Vd and Kel respectively. Additive error model 
was calculated with the initial values of sigma of 
0.1 (Figure 2).  

In NONMEM, analyses were performed 
using the provided one compartment oral 
model (ADVAN 2) with Ka, Kel and Vd 
parameters provided in NONMEM PK library. 
No covariate was applied while the covariance 
implemented the default diagonal pattern.              
Data were assumed to follow a log normal 
distribution. Calculation was performed using 2 

(per hour), 300 (L) and 0.5 (per hour) as initial 
estimates of Ka, Vd and Kel respectively.           
The initial estimates of the random error (eta) 
were 0.2, 0.2 and 0.1 for Ka, Vd and Kel 
respectively. Additional residual error model 
was used with the initial values of 0.00001 
(Figure 3) .  

The individual parameter values of Ka, 
Kel and Vd obtained from the analyses of the 
sparse sampling data using Monolix and 
NONMEM were compared to the individual 
prediction of Ka, Kel and Vd obtained by the 
conventional  (two stage approach)  analyses  of 

 
 

Figure 3. Listing code of NONMEM analyses of the sparse data 
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the rich data using PKSolver version 2.0 
(Zhang et al., 2010). Due to non-normal 
distribution of some data (tested based on 
Shapiro-Wilkes method using OpenStat 2012), 
the  comparison  of means of  Ka, Kel  and Vd  
of the sparse sampling data to the rich data was 
performed based on the Wilcoxon matched-
pairs method using OpenStat version 2012 
(Miller, 2012). 

RESULTS AND DISCUSSION 
Monolix analyses the sparse data in 

several type of calculation. One of the 
important part of the goodness of fit is based 
on presentation of population prediction versus 
data as well as individual prediction versus data 
(Mohammed et al., 2012; Owen and Fiedler-
Kelly, 2014; Zheng et al., 2014) (Figure 4). 
Although the population prediction of Cp data 

 
 

Figure 4. Goodness of fit analyses of the sparse data using Monolix based on correlation of 
population prediction of Cp (panel A) and post-hoc individual prediction (panel B) versus the 
values of Cp 

 

 
 
Figure 5. Typical example of the pos-hoc individual fitting of the sparse data using Monolix 
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does not clearly demonstrate a random 
distribution around the line of identity, there is 
no certain pattern or shape (for example 
sigmoid, or shoe shape) indicating a good 
population fitting. Furthermore, the individual 
prediction is presented mostly on the line of 
identity. This indicates that systematically the 
model could adequately describe all of the 
limited, sparse sampling data. Good individual 
fitting is also occured from the individual data 
fit (Figure 5), which represents the good 
systematic description of the model to the data 
(Owen and Fiedler-Kelly, 2014). 

Similarly, NONMEM models the sparse 
data very adequately. Figure 6 demonstrates the 
good fitting of both population as well as the 
individual post hoc estimation of the observed 
data. Good individual fitting (Figure 7), which 
demonstrates the good description of the 
model to the sparse data. 

Furthermore, we analyze the individual 
pharmacokinetic parameter values of Ka, Vd 
and Kel of the sparse data to the rich data using 
the Wilcoxon matched-pairs method by 
comparing each parameter values of the same 
subject (Table I). Although in all comparisons, 

 
 

Figure 6. Goodness of fit analyses of the sparse data using NONMEM based on correlation of 
population prediction of Cp (panel A) and post-hoc individual prediction (panel B) versus the 
values of Cp 
 

 
 

Figure 7. Typical example of the post-hoc individual fitting (red line) and the population prediction 
fitting (blue line) of the sparse data using NONMEM 
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the differences are significant (p<0.05), the 
mean values of the sparse sampling data of 
those 20 subjects for Ka, Vd and Kel estimated 
by Monolix are in the ratio of 94%, 96% and 
108% over the real/rich data. 

Furthermore, NONMEM better estimates 
the values of those parameters. The mean 
values of the sparse sampling data of those 20 
subjects for Ka, Vd and Kel (Table I), are in the 
ratio of 98, 98 and 104% over the real/rich  data. 
The difference is significant (p<0.05) only in 
Kel comparison. Thus, both Monolix and 
NONMEM can predict the parameter values of 
Ka, Vd and Kel in the range of less than 10%. 
These facts indicate a good capability of both 
Monolix and NONMEM to adequately 
describe the sparse data.  

Such capability is very important to 
complement a therapeutic drug monitoring of 
certain drugs. In such cases, a sparse data is 
collected from patients (Parke and Charles, 
1998; Shaker et al., 2013).  This present study 
indicates that Monolix and NONMEM can 
adequately describe the simulated sparse data, 
limited only to one up to three samples per 
subject. Further studies are required in each 
drug of interest to study the best scenario in the 
therapeutic drug monitoring performed.  

With this concern, it is important to 
obtain sample at different time point in each 
patients. In compilation, such strategy results in 
a complete figure of the absorption, 
distribution and elimination phases of all 
patients population. This allows Monolix, 

NONMEM or other software packages to 
accurately estimate pharmacokinetic parameters 
in each subject. Those parameters are among 
the important aspects to evaluate whether the 
outcome of therapy has been reached or a new 
dose regimen is required.  
 

CONCLUSION 
Population-based modeling approach 

can adequately describe limited, sparse 
sampling data to estimate the model 
parameters. Estimation of those parameters 
could facilitate a better therapeutic outcome for 
patients by means of therapeutic drug 
monitoring resulting in adequate justification 
for dose regimen during therapy. Monolix as a 
free (for academic) software package has a 
comparable performance to NONMEM, which 
opens broader application for optimizing 
therapeutic outcome in Indonesia. 
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